شناسایی پارامترهای تأثیرگذار بر تقلب در حوزه مالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده صنایع، دانشگاه خواجه نصیرالدین طوسی

2 استادیار دانشکده جامعه‌شناسی دانشگاه ارومیه

3 کارشناسی ارشد مهندسی صنایع ـ صنایع، دانشکده صنایع، دانشگاه خواجه‌ نصیرالدین طوسی

چکیده

در کشورهای در حال توسعه عمدتاً اقتصاد دولتی رایج است و بخش زیادی از اقتصاد و سازمان‌ها تحت اداره دولت مرکزی هستند. این عامل باعث تمرکز اقتصادی می‌شود که از عمده نتایج منفی آن می‌توان به گردش و توزیع نابرابر ثروت در جامعه اشاره کرد، پس در این جوامع احتمال به‌وجود آمدن فشار اقتصادی و محرومیت اجتماعی که منشأ فساد است، بیشتر می‌شود. به همین دلیل توجه به شاخص‌های مالی، کنترلی و نظارتی ضرورتی انکارناپذیر است و باید متناسب با رشد و گسترش اقتصاد، شاخص‌های نظارتی را تغییر داد و بهبود بخشید تا بتوان با تقلب مالی که یکی از اجزای ضربه زننده به اقتصاد است به بهترین شکل مواجه شد. در این میان شناسایی و اولویت‌بندی پارامترهای زمینه‌ساز تقلب مالی از اهمیت ویژه‌ای برخوردار است. این مقاله با استفاده از مطالعات کتابخانه‏ای و مصاحبه با خبرگان، پارامترهای مؤثر بر تقلب مالی در کشور را شناسایی کرده و با استفاده از داده‌های جمع‏آوری شده از 388 پرسش‌نامه و به‌کارگیری تاپسیس فازی به اولویت‏بندی این پارامترها می‌پردازد. بر‌اساس نتایج حاصله، عدم استقلال واقعی بانک مرکزی، نبود سیستم نظارتی کارآمد و شفاف در دستگاه نظارتی و بازرسی مالی و چندین عامل دیگر به‌عنوان عوامل اصلی شناسایی شده و پیشنهادها و راهکارهایی برای پیشگیری از تقلب مالی ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Recognition of effective parameters on financial fraud

نویسندگان [English]

  • Seyyed Babak Ebrahimi 1
  • Javad Jahangirzadeh 2
  • Hamid Ketabian 3
1
2
3
چکیده [English]

In the developing countries the central governments play mainly the major role in society. In these societies the distribution of wealth is not fairly that leads to economic hardship and social exclusion as the base of corruption. For this reason considering the financial, controlling and monitoring indicators are deniable. And it should change the controlling indicators according to economic development in order to fight against financial fraud as one of the economic picky component. In this manner recognition of effective parameters on financial fraud is absolutely essential. In this article by utilization of the related studies and interviewing with experts, the effective parameters on financial fraud were identified. Afterwards by using of collected data from 388 questionnaires besides Topsis fuzzy approach, these parameters were prioritized. According to the results the main causes of this problem are: the dependence of central bank, lack of efficient controlling and monitoring system besides other causes, which have been presented by a preventive methods and suggestions.

کلیدواژه‌ها [English]

  • Central bank independence
  • Financial fraud
  • Topsis fuzzy
  • Transparency of information
  1. 1.آذر، عادل و حجت فرجی (1389). علم مدیریت فازی، چاپ چهارم، تهران، مؤسسه کتاب مهربان نشر.

    2.بهمنش، مالک (1390). «گلوگاه‌های بروز فساد در نظام بانکی و راهکارهای مقابله با آن»، نشریه گزارش پژوهش، سازمان بازرسی کل کشور، ش 41.

    3.پوریانسب، امیر و ابراهیم ابراهیمی (1389). بازرسی حرفه‌ای تقلب: راهنمای گام به گام، چاپ اول، تهران، حساب‌افزار ایرانیان.

    4.پوریانسب، امیر، کاظم وادی‌زاده و احمد عیسایی خوش (1390). تقلب و فساد مالی/ پیشگیری و کشف، چاپ اول، تهران، حساب‌افزار ایرانیان.

    5.سرمد، زهره، عباس بازرگان و الهه حجازی (1382). روش‌های تحقیق در علوم رفتاری، چاپ هفتم، تهران، انتشارات آگاه.

    6.صفرزاده، محمدحسین (1389). «توانایی نسبت‌های مالی در کشف تقلب در گزارش مالی: تحلیل لاجیت»، مجله دانش حسابداری، سال اول، ش 1.

    7.مرکز آموزش و تحقیقات حسابداری و حسابرسی حرفه‌ای (1390). «آموزه‌هایی از یک اختلاس»، فصلنامه تخصصی جامعه حسابداران رسمی ایران، ش 15.

    8.گل، جی. ای. (1380). تئوری‌ها و فرایند مدیریت، ترجمه سهراب خلیلی شورینی، تهران، انتشارات سمت.

    9.مؤمنی‌، منصور (1389). مباحث نوین تحقیق در عملیات، چاپ اول، تهران، آینده.

    1. وادی‌زاده، کاظم و خدیجه حیدری (1388). ارزیابی ریسک و تقلب ـ ایجاد برنامه حسابرسی تقلب، اصفهان، آسمان نگار.
      1. Bede, B. (2013). Mathematics of Fuzzy Sets and Fuzzy Logic (Studies in Fuzziness and Soft Computing), Springer.
      2. Blanton, K. (2012). "The Rise of Financial Fraud", Center for Retirement Research at Boston College, No. 12-5.
      3. Bose, I., S. Piramuthu and M. J. Shaw (2011). "Quantitative Methods for Detection of Financial Fraud", Journal of Decision Support Systems, No. 50.
      4. Cukierman, A. (2008). "Central Bank Independence and Monetary Policy Making Institutions-past, Present and Future", European Journal of Political Economy, Vol. 24.
      5. Doraid, D., M. Hayajneh and F. Batieha (2011). "A Fuzzy Multi-criteria Decision Making Model for Supplier Selection", Expert Systems with Applications, No. 38.
      6. Dursun, M. and K. E. Ertugrul (2010). "A Fuzzy MCDM Approach for Personnel Selection", Expert Systems with Applications, No. 37.
      7. Fich, E. M. and A. Shivdasan (2007). "Financial Fraud, Director Reputation and Shareholder Wealth", Journal of Financial Economics, No. 86.
      8. Gokhan, T., M. Sevkli, M. Sanal and S. Zaim (2010). "Analyzing Business Competition by Using Fuzzy TOPSIS Method: An Example of Turkish Domestic Airline Industry", Expert Systems with Applications, No. 38.
      9. Gorton, G. B. and G. G. Pennacchi (1995). "Banks and loan sales marketing nonmarketable assets", Journal of Monetary Economics, No. 35.
      10. Gray, G. L. and R. S.  Debreceny (2014). "A Taxonomy to Guide Research on the Application of Data Mining to Fraud Detection in Financial Statement Audits", International Journal of Accounting Information Systems, Vol. 15.
      11. Hayo, B. and C. Hefeker (2010). The Complex Relationship Between Central Bank Independence and Inflation, In: P. L. Siklos, M. T. Bohl and M. E. Wohar (Eds.), Challenges in Central Banking, Cambridge University Press, Cambridge MA.
      12. Hielscher, K. and G. Markwardt (2012). "The Role of Political Institutions for the Effectiveness of Central Bank Independence", European Journal of Political Economy, No. 28.
      13. Hwang, C. L. and K. Yoon (1981). Multiple Attribute Decision Making: a State of the Art survey, Springer Verlag.
      14. Hsu, T. H. and T. H. Yang (2000). "Application of Fuzzy Analytic Hierarchy Process in the Selection of Advertising Media", Journal of Management and Systems, No. 7.
      15. IBM. Global Technology Services (2007). Leveraging Innovative Security Solutions for Banking and Financial Markets. A. Ishikawa, T. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta and H. Mieni (1993). "The Max-Min Delohi Method and Fuzzy Delohi Method via Fuzzy Integration”, Fuzzy Sets Systems, No. 55, http://dx.doi.org/10.1016/0165-0114(93)90251-c.
      16. Ishikawa, A., T. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta and H. Mieno (1993). "The Max-Min Delphi Method and Fuzzy Delphi Method via Fuzzy Integration", Fuzzy Sets Systems, No. 55, http://dx.doi.org/10.1016/0165-0114(93)90251-C.
      17. Kamarudin, K. A., W. A. W. Ismail and W. A. H. W. Mustapha (2012). "Aggressive Financial Reporting and Corporate Fraud", Procedia, Social and Behavioral Sciences, Vol. 65.
      18. Kanapickiene, R. and Z. Grundiene (2015). "The model of Fraud Detection in Financial Statements by Means of Financial Ratios", Social and Behavioral Sciences, Vol. 213.
      19. Kuo,Y. F. and C. P. Cheng (2008). "Constructing Performance Appraisal Indicators for Mobility of the Service Industries Using Fuzzy Delphi Method", Expert Systems with Applications, Vol. 35.
      20. Mohameda, N. and M. Handley-Schachelorb (2014). "Financial Statement Fraud Risk Mechanisms and Strategies: the Case Studies of Malaysian Commercial Companies", Procedia, Social and Behavioral Sciences, Vol. 145.
      21. Mosebach, M. (1999). "Market Response to Banks Granting Lines of Credit", Journal of Banking and Finance, No. 23.
      22. Murry, T. J., L. L. Pipino and J. P. Van Gigch (1985). "A Pilot Study of Fuzzy Set Modification of Delphi", Human Systems Management, No. 5.
      23. Ngai, E. W. T., H. U. Yong, Y. H. Wong, Y. Chen and X. Sun (2011). "The Application of Data Mining Techniques in Financial Fraud Detection: A Classification Framework and an Academic Review of Literature", Decision Support Systems, Vol. 50.
      24. Perols, J. L. and B. A. Lougee (2011). "The Relation between Earnings Management and Financial Statement Fraud", Advances in Accounting, Incorporating Advances in International Accounting, Vol. 27.
      25. Ravisankar, P., V. Ravi, G. Raghava Rao and I. Bose (2011). "Detection of Financial Statement Fraud and Feature Selection Using Data Mining Techniques", Decision Support Systems, Vol. 50.
      26. Tarjo, Herawati N. (2015). "Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud", Social and Behavioral Sciences, Vol. 211.
      27. The Financial Services Authority (2008). Data Security in Financial Services, http://www.fsa.gov.uk.
      28. Throckmorton, C. S., W. J. Mayew, M. Venkatachalam and L. M. Collins (2015). "Financial Fraud Detection Using Vocal, Linguistic and Financial Cues", Decision Support Systems, Vol. 74.
      29. West, J. and M. Bhattacharya (2016). "Intelligent Financial Fraud Detection: A Comprehensive Review", Computers and Security, Vol. 57.
      30. Wu, Ch. and W. Fang (2011). "Combining the Fuzzy Analytic Hierarchy Process and the Fuzzy Delphi Method for Developing Critical Competences of Electronic Commerce Professional Managers", Qual Quant, No. 45.
      31. Zadeh, L. A. (1965). "Information and Control", Fuzzy sets, Vol. 8, No. 3.

    Zhou, W. and G. Kapoor (2011). "Detecting Evolutionary Financial Statement Fraud", Decision Support Systems, Vol. 50.