ارائه یک مدل ترکیبی برای اولویت‌دهی احداث نیروگاه با منابع تجدید‌پذیر با در نظر گرفتن اهداف توسعه پایدار (مطالعه موردی: کشور ایران)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی صنایع، دانشگاه سمنان

2 کارشناسی ارشد مدیریت اجرایی، دانشکده مهندسی صنایع، دانشگاه سمنان

چکیده

کمبود سوخت‌های فسیلی، بحران جهانی نفت و همچنین افزایش آگاهی‌های زیست‌محیطی، پذیرش عمومی از نیروگاه‌های سنتی را در کشورهای درحال‌توسعه کاهش داده است. در این تحقیق برای حمایت از تصمیم‌گیرندگان، جهت انتخاب بهترین جایگزین برای نیروگاه‌های سنتی با سوخت تجدیدپذیر روشی ارائه می‌شود که در آن به بررسی جنبه‌های اقتصادی، زیست‌محیطی، اجتماعی و فنی برای احداث نیروگاه‌های با سوخت‌های تجدیدپذیر می‌پردازد. روش مذکور رویکردی ترکیبی از ابزارهای روش منطق دیجیتال بهبودیافته و روش تاپسیس فازی است که به ارزیابی نیروگاه‌های مختلف و شناسایی بهترین نیروگاه با توجه به معیارهای فنی و اهداف توسعه پایدار می‌پردازد.برای درک بهتر روش پیشنهادی، یک مطالعه موردی در ایران که با وابستگی شدید اقتصادی به نفت دارد، مطرح می‌شود و در آن پنج نیروگاه تولید برق با توجه به ظرفیت‌های کشور، مورد بررسی و اولویت‌بندی قرار می‌گیرند که نیروگاه برق‌آبی بالاترین رتبه را با توجه به اهداف فنی و توسعه پایدار کسب می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Hybrid Model for Prioritizing the Construction of Power Plants with Renewable Resources, Considering Sustainable Development Objectives (Case Study: Iran)

نویسندگان [English]

  • Mohammadali Beheshtinia 1
  • Armin Rezaei 2
  • Misam Shahjoei 2
چکیده [English]

Scarcity of fossil fuels, global oil crisis and the increase in environmental awareness have steadily reduced the general acceptance of traditional power plants such as gas power plants in developing countries. In this respect, decision makers in the energy field need tools to support decision-making in order to select the best alternative to traditional power plants with renewable fuels. In this research, a tool is presented for supporting decision-makers in which economic, environmental, social and technical aspects for constructing power plants with renewable fuels are studied. Then a research method through a combination of improved digital logic method tools is presented. Additionally, the phasing TOPSIS method is presented for solving the phasing multi-criteria decision-making and weighting and ranking of the electricity generation plants using inexhaustible resources with regard to qualitative and quantitative criteria. The purpose of the proposed model is to evaluate different power plants and identify the best power plant regarding technical criteria and objectives of sustainable development. To better understand the proposed method, a case study about Iran, a country with high economic dependence on oil, is represented, in which 5 power plants in Iran are studied and prioritized according to the capacities of this country. Hydroelectric power plant gains the highest rating regarding technical and sustainable development objectives.

کلیدواژه‌ها [English]

  • Phasing TOPSIS
  • MDL
  • Renewable Energy
  • Sustainable Development
  • FMCDM
1. شعربافیان، نیلوفر (1387). «برآورد پتانسیل فنی و اقتصادی انرژی خورشیدی حرارتی در ایران: راهکاری برای توسعه پایدار انرژی خورشیدی»، فصلنامه مطالعات اقتصاد انرژِی، دوره 4، ش 15.

2. Ahmad, S. and R. M. Tahar (2014). "Selection of Renewable Energy Sources for Sustainable Development of Electricity Generation System Using Analytic Hierarchy Process: A Case of Malaysia", Renewable Energy, 63.

3. Bahrami, M. and P. Abbaszadeh (2013). "An Overview of Renewable Energies in Iran", Renewable and Sustainable Energy Reviews, 24.

4. BP (British Petroleum Report) (2006). Statistical Review of world Energy.

5. Chatzimouratidis, A. I. and P. A. Pilavachi (2009). "Technological, Economic and Sustainability Evaluation of Power Plants Using the Analytic Hierarchy Process", Energy Policy, 37 (3).

6. Chen, S. and C. Hwang (1992). "Fuzzy Multiple Attribute Decision Making: Methods and Applications", Springer Verlag Inc.

7. Dehghan-Manshadi, B., H. Mahmudi, A. Abedian and R. Mahmudi (2007). "A Novel Method for Materials Selection and Mechanical Design: Combination of non-linear Normalization and a Modified Digital Logic Method", Material and Design, 28.

8. Dorini, G., Z. Kapelan and A. Azapagic (2010). "Managing Uncertainty in Multiple-criteria Decision Making Related to Sustainability Assessment", Clean Technologies and Environmental Policy, 13(1).

9.Evans, A., V. Strezov and T. J. Evans (2009). "Assessment of Sustainability Indicators for Renewable Energy Technologies", Renew, Sustainable Energy Review, 13 (5).

  1. Gallego-Carrera, D. and A. Mack (2010). "Sustainability Assessment of Energy Technologies via Social Indicators: Results of a Survey Among European Energy Experts", Energy Policy, 38 (2).
  2. Gujba, H., Y. Mulugetta and A. Azapagic (2011). "Power Generation Scenarios for Nigeria: an Environmental and Cost Assessment", Energy Policy, 39 (2).
  3. Heinrich, G., L. Basson, B. Cohen, M. Howells and J. Petrie (2007). "Ranking and Selection of Power Expansion Alternatives for Multiple Objectives Under Uncertainty", Energy 32.
  4.  Hwang, C. L. and K. Yoon (1981). Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, New York.
  5. IEA (International Energy Agency) (2012). World Energy Outlook 2012—Fact Sheets, Paris.
  6. _____ (2011). International Energy Outlook.
  7. IEA and OECD (2008). "Energy Technology Perspectives: Scenarios and Strategies to 2050", International Energy Agency and Organization for Economic Co-operation and Development, Paris, France.
  8. _____ (2010). World Energy Outlook, International Energy Agency and organization for Economic Co-operation and Development, Paris, France.
  9. Jacobson, M. Z. (2009). "Review of Solutions to Global Warming, air Pollution, and Energy Security", Energy and Environmental Science, 2 (2).
  10. Jeswani, H. K., A. Azapagic, P. Schepelmann and M. Ritthoff (2010). "Options for Broadening and Deepening the LCA Approaches", Journal of Cleaner Production, 18(2).
  11. Kan, H., R. Chen and S. Tong (2012). "Ambient air Pollution, Climate Change and Population Health in China", Environment International, 42.
  12. Kowalski, K., S. Stagl, R. Madlener and I. Omann (2009). "Sustainable Energy Futures: Methodological Challenges in Combining Scenarios and Participatory Multi-criteria Analysis", European Journal of Operational Research, 197(3).
  13. Kralova, I. and J. Sjöblom (2010). "Biofuels–renewable Energy Sources: a Review", Journal of Dispersion Science and Technology, 31(3).
  14. La Rovere, E. L., J. B. Soares, L. B. Oliveira and T. Lauria (2010). "Sustainable Expansion of Electricity Sector: Sustainability Indicators as an Instrument to Support Decision Making", Renewable and Sustainable Energy Reviews, 14(1).
  15. Li, K., H. Bian, C. Liu, D. Zhang and Y. Yang (2015). "Comparison of Geothermal with Solar and Wind Power Generation Systems", Renewable and Sustainable Energy Reviews, 42.
  16. Maxim, A. (2014). "Sustainability Assessment of Electricity Generation Technologies Using Weighted Multi-criteria Decision Analysis", Energy Policy, 65.
  17. May, J. R. and D. J. Brennan (2006). Sustainability Assessment of Australian Electricity Generation, Process Safety and Environmental Protection, 84(2).
  18. Ness, B., E. Urbel-Piirsalu, S. Anderberg and L. Olsson (2007). Categorising Tools for Sustainability Assessment, Ecological Economics, 60 (3).
  19. Onat, N. and H. Bayar (2010). "The Sustainability Indicators of Power Production Systems, Renew", Sustainable Energy Review, 14 (9).
  20. Roth, S., S. Hirschberg, C. Bauer, P. Burgherr, R. Dones, T. Heck and W. Schenler (2009). "Sustainability of Electricity Supply Technology Portfolio", Annals of Nuclear Energy, 36(3).
  21. Schenler, W., S. Hirschberg, P. Burgherr, M. Makowski and J. Granat (2009). "Final Report on Sustainability Assessment of Advanced Electricity Supply Options", New Energy Externalities Developments for Sustainability (NEEDS). Project no 502687, European Commission.
  22. Şengül, Ü, M. Eren, S. E. Shiraz, V. Gezder and A. B. Şengül (2015). "Fuzzy TOPSIS Method for Ranking Renewable Energy Supply Systems in Turkey", Renewable Energy, 75.
  23. Stamford, L. and A. Azapagic (2012). "Life Cycle Sustainability Assessment of Electricity Options for the UK", International Journal of Energy Research, 36(14).
  24. UNDP (2000). World Energy Assessment 2000. Energy and the Challenge of Sustainability, New York. ISBN 9211261260.
  25. UNEP and SETAC (2011). Towards a Life Cycle Sustainability Assessment, Making Informed Choices on Products.
  26. Wang, J. J., Y. Y. Jing, C. F. Zhang and J. H. Zhao (2009). "Review on Multi-criteria Decision Analysis Aid in Sustainable Energy Decision-Making", Renewable and Sustainable Energy Reviews, 13(9).
  27. WCED (World Commission on Environment and Development (1987). Our Common Future, Oxford University Press, Oxford.
  28. Zangeneh, A., S. Jadid and A. Rahimi-Kian (2009). "A Hierarchical Decision Making Model for the Prioritization of Distributed Generation Technologies: A Case Study for Iran", Energy Policy, 37 (12).